The “How To” Guide to Use

Everest Identity Oracle Services
through Chainlink Direct Requests

The Chainlink Direct Request Flow to Everest Oracle Node:

<+— fulfilOracleRequest Everest
Oracle Node

ChainlinkClient — transferandCall — | (@) LINK Token }» onTokenTransfer —»
‘ oOracle Request T

callBack

Oracle Contract

Everest Direct Requests:

Type of Request | Example Request: Example Responses:

Human & Unique | Is “Yes” or “Unknown”
Oxb794f5ea0ba39494ce839613fffb
a/4279579268 Human and Unique?

KYCed Is “Yes on 4 November 2022”
Oxb794f5ea00ba39494ce839613fffb | or “Unknown”
a/74279579268 KYCed?

Table of Contents:

1. Everest Address Check Protocol
Initial use cases include:

2. Data Request and Response Formats
Two Steps KYC Status Request
1) Status Request
2) KYC Request

3. Integration Guides
Preparation Steps
Main Steps
Network Details
Polygon (Matic) Mainnet
Ethereum Goerli Testnet

4. How to Make a KYC Request
Pricing for KYC Requests

Useful Links

© 0 00 O 0o (20N~ S W N

- -
N ©

-
w

A How To Use Everest Identity Services 0
Through Chainlink Direct Requests

1. Everest Address Check Protocol

Smart contract developers will have a full Web 3.0 infrastructure stack including blockchains for
on-chain logic and state changes, Chainlink oracles for off-chain communication and computation,
and Everest for unique human identity, account creation/verification, KYC/AML, and KYB
organisational registration.

By integrating Chainlink into the Everest ecosystem, several innovative bidirectional smart contract
capabilities are now possible. This includes leveraging Chainlink to bridge cryptographically-proven
biometric identity accessed via Everest’s Everchain to external smart contract systems as a means
of triggering their on-chain applications, as well as using Chainlink oracles to enable smart
contracts to trigger Everest KYC/KYB capabilities. Since Everest will use Chainlink infrastructure,
applications will be able to call the Everest oracle, to determine if an associated wallet is in one of
four states: unknown, Human and Unique, Identity Verified, and KYC Status checked.
Organisations are in one three states: unknown, Unverified, and Verified (KYB). KYCed and
KYBed organisations can use fiat or crypto-in/out facilities that are provided by Everest. Users will
ALWAYS maintain control over their data, what gets shared, with whom and how; and any
credential sharing will be accomplished privately and securely.

This bidirectional data partnership positions Chainlink as the most frictionless solution for any
smart contract developer wanting to perform KYC, human & unique identity verification between
Everest and external systems. Chainlink has a large collection of security reviewed, Sybil-resistant
node operators which can be easily composed into decentralised oracle networks to guarantee
strong uptime and tamper-resistance around oracle services. This integration greatly expands the
scope of applications developers can create due to Chainlink’s blockchain and APl agnostic
ecosystem.

Chainlink opens up bi-directional communication capabilities for Everest, meaning it can receive
external inputs that trigger Everest’s identity account creation/verification or fetch a user/business’s
KYC/KYB status. This is enabled through the development of custom Chainlink External Adapters,
which can read and write data on Everchain.

Initially, an Everest external adapter allows Chainlink oracles to read a user (KYC) or
organisation’s (KYB) verification status within the Everest ecosystem, which can then be combined
with other external adapters to write that data on other networks. There are also many other
possibilities here, including account creation from other blockchain networks directly onto
Everchain.

Everest Network 2

A

How To Use Everest Identity Services 0
Through Chainlink Direct Requests

Initial use cases include:

1.

Everest offers human and unique status oracle through Chainlink by enabling the
distribution of credentials - which allow the Chainlink Oracle subscriber to query if this is a
known individual. For example, prevent a user from deduplication within an external
ecosystem.

Everest offers Identity Verified KYCed status oracle through Chainlink by enabling the
distribution of credentials which allow the Chainlink Oracle subscriber to query if this
individual's KYC status has been recently checked. This allows organisations to scale up
quickly reducing operational costs while still maintaining KYC/AML compliance.

Everest offers KYCed status oracle through Chainlink by enabling the distribution of
credentials which allow the Chainlink Oracle subscriber to query if this individual's KYC
status has been recently checked.

Everest offers organisational registration and KYB status oracle through Chainlink by
enabling the distribution of credentials which allow the Chainlink Oracle subscriber to query
if this organisation’s KYB status has been recently checked. Most B2B companies need to
meet mandatory legal compliance by performing due diligence in identifying the legal
representative(s) and their connection to the company. Everest takes this tedious process
and greatly reduces costs, time and administrative procedures.

Everest and Chainlink co-create a "monetize my personal information" marketplace. It puts
the user in control of their private permissioned identity, and allows them to surface pieces
of information about themselves for incentives if they choose so.

Everest and Chainlink co-create a creditworthiness oracle offering.

Everest Network 3

A How To Use Everest Identity Services 0
Through Chainlink Direct Requests

2. Data Request and Response Formats

Key Functionality:

- Consumer Smart Contract on external network (production - Polygon) is able to make “get
address status” request by passing an address and getting back requestlid;

- Consumer Smart Contract is able to get response by requestld;

- The response contains data about address status (Human&Unique or not, date of KYCed if
available);

- Data about all users on Everest platform will be used to perform the check (combine the
status response);

- Communications between networks are provided by Chainlink;

- Chainlink request from Polygon network will be relayed to Everest platform and answered
after LINK token payment has been received.

Consumer Smart Contract Repository:
https://qgithub.com/EverlD/everest-chainlink-consumer/blob/master/contracts/EverestConsumer.sol

Two Steps KYC Status Request

1) Status Request

- Allow Consumer Smart Contract (EverestConsumer) contract spend your LINK
tokens:
LinkTokenInterface.approve(
address spender, - everest consumer contract
uint256 value - more than "payment”
)
- Request the status (this method also makes transferFrom):
EverestConsumer.requestStatus(
address _revealee - desired address
)
- Retrieve your latest requestld calling this method:
EverestConsumer.getlLatestSentRequestld()
- Wait about 2-3 minutes before the request will be fulfilled.

Everest Network 4

https://github.com/EverID/everest-chainlink-consumer/blob/master/contracts/EverestConsumer.sol

t How To Use Everest Identity Services
Through Chainlink Direct Requests

% polygon [Revealer Address
Request to Check . Link
Address for KYC Link requestid Token
Y) Contract
Consumer Smart Contract
Address to be .]
Checked for KYC Link KYC Status
NV N
Chainlink Operator Contract
A
Address to be KYC Status in
Checked for KYC 3 — 5 minutes

OChainlink [' Chainlink Network ‘j

Address to be KYC Status
Checked for KYC

Aeverest [' Everest Oracle]

Everest Network

A How To Use Everest Identity Services 0
Through Chainlink Direct Requests

2) KYC Request

- You can get any request by requestld or the latest fulfilled request by the address
using the following methods:

getRequest(bytes32 _requestlid)
getlLatestFulfilledRequest(address _revealee)

- If getRequest method returns isFulfilled=false for 5 minutes, you can cancel your
request and return funds using:

cancelRequest(bytes32 _requestld)

KYC Request Structure:

isFullfilled;
isCanceled;
isHumanAndUnique;
1sKYCUser;
address revealer;

address revealee;

uint40 kycTimestamp;

uint40 expiration;

}

Everest Network 6

A How To Use Everest Identity Services
Through Chainlink Direct Requests

3. Integration Guides

Preparation Steps
1. Import LinkToken Interface to your smart contract

import "@chainlink/contracts/src/v0.8/interfaces/LinkTokenInterface.sol";
2. Init object

erc20Link = LinkTokenlInterface(linkAddr);
3. Make Approve

erc20Link.approve(consAddr, type(uint256).max);

4. Make sure you have at least 0.1 LINK - for one request

Main Steps

1. Import IEverestConsumer to your smart contract
import "everest-consumer/interfaces/IEverestConsumer.sol";

2. Initialise object
consumer = |EverestConsumer(consAddr);

3. Make Request
consumer.requestStatus(revealeeAddress)

4. Wait some time, and check the result
result = consumer.getLatestFulfilledRequest(revealeeAddress)

Everest Network

A How To Use Everest Identity Services
Through Chainlink Direct Requests

Network Details

Polygon (Matic) Mainnet

LINK Token Address: 0xb0897686c545045aFc77CF20eC7A532E3120E0F1
Operator Address: 0x97b6Df5808b7f46Ee2C0e482E1B785CE3A2BC8BF
Consumer Smart Contract: OxC1AfF12173B38aE44feDF453Af7A57AFF3cFd3f0
Payment Amount: 0.1 LINK

JoblID: 827352¢c4d8684571b4605f9022853ddf

JobID as bytes32:
0x3832373335326334643836383435373162343630356639303232383533646466

Ethereum Goerli Testnet

LINK Token Address: 0x326C977E6efc84E512bB9C30f76E30¢c160eD06FB
Operator Address: 0xB9756312523826A566e€222a34793E414A81c88E1
Consumer Smart Contract: 0xd6c576B4f6Ab3d70b49FA2a1F73711943f3a14f2
Payment Amount: 0.1 LINK

JoblID: 14f849816fac426abda2992chbf47d2cd JobID as bytes32:
0x3134663834393831366661633432366162646132393932636266343764326364

Everest Network

ﬁ How To Use Everest Identity Services 0
Through Chainlink Direct Requests

4. How to Make a KYC Request
We will go through the KYC request procedure with smart contracts deployed on Goerli Testnet.
1) Initial request with Address 0x652c3c775A82fEc8D176BEaEB1e259DD5b0c8526 to be

checked for KYC from O0xb1080E639CC542C9BfbC1e2fffac075Fea848287 performed with
Consumer Smart Contract

4. requestStatus (0xe961b1a1l)

_revealee (address)

0x652c3c775A82fEc8D176BEaEB1e259DD5b0c8526

Link to Consumer Smart Contract:
https://goerli.etherscan.io/address/0xd6c576b4f6ab3d70b49fa2a1f73711943f3a14f2#writeContract

The following transaction is performed:
https://goerli.etherscan.io/tx/0x228e88515a1bf2aa51786ab23844bc64687f98aa13e60e4b8f22a3fb
520ecdf1

Link to Chainlink Operator Contract:
https://goerli.etherscan.io/address/0xb9756312523826a566e222a34793e414a81c88e1

Consumer Smart Contract sends the following transaction to Chainlink Operator Contract:

https://goerli.etherscan.io/tx/0x47055719d33398c1c13a2a0421048e53f4c79c6d4228e70c3b53b4b
OdccOce8d

Everest Network Q

https://goerli.etherscan.io/address/0xd6c576b4f6ab3d70b49fa2a1f73711943f3a14f2#writeContract
https://goerli.etherscan.io/tx/0x228e88515a1bf2aa51786ab23844bc64687f98aa13e60e4b8f22a3fb520ecdf1
https://goerli.etherscan.io/tx/0x228e88515a1bf2aa51786ab23844bc64687f98aa13e60e4b8f22a3fb520ecdf1
https://goerli.etherscan.io/address/0xb9756312523826a566e222a34793e414a81c88e1
https://goerli.etherscan.io/tx/0x47055719d33398c1c13a2a0421048e53f4c79c6d4228e70c3b53b4b0dcc0ce8d
https://goerli.etherscan.io/tx/0x47055719d33398c1c13a2a0421048e53f4c79c6d4228e70c3b53b4b0dcc0ce8d

ﬁ How To Use Everest Identity Services 0
Through Chainlink Direct Requests

2) Inresponse to initiated request Consumer Smart Contract provide us with requestID:
Oxa2c6e326f61926b4a8c0f4f522c80c0be28145e32b1402b8c8f57a71c9dd512b

6. latestSentRequestid

<input> (address)
Oxb1080E639CC542C9BfbC1e2fffac075Fea848287
Query
bytes32

[latestSentRequestid(address) method Response]
» bytes32 : 0xa2c6e326f61926b4a8c0f4f522c80c0be28145e32b1402b8c8f57a71c9dd512b

Link to Consumer Smart Contract:
https://goerli.etherscan.io/address/0xd6c576b4f6ab3d70b49fa2a1f73711943f3a14f2#readContract

3) After period of 3-5 minutes when Everest chain KYC request is performed we can obtain
KYC data from Consumer Smart Contract

3. getRequest

_requestld (bytes32)
Oxa2c6e326f61926b4a8c0f4f522c80c0be28145e32b1402b8c8f57a71c9dd512b
Query
tuple

[getRequest(bytes32) method Response]
» tuple: true,false,true,true,0xb1080E639CC542C9BfbC1e2fffac075Fea848287,0x652c3c775A82fEc8D176BEaEB1e259DD5b0c8526,1661786511,1664541564

Obtained from Consumer Smart Contract KYC Status:
true,false,true,true,0xb1080E639CC542C9BfbC1e2fffac075Fea848287,0x652c3c775A82fEc8D17
6BEaEB1e259DD5b0c8526,1661786511,1664541564

Everest Network 10

https://goerli.etherscan.io/address/0xd6c576b4f6ab3d70b49fa2a1f73711943f3a14f2#readContract

A How To Use Everest Identity Services 0
Through Chainlink Direct Requests

We interpret according to KYC Request Structure:

{

bool isFullfilled - true

bool isCanceled - false

bool isHumanAndUnique - true

bool isKYCUser - true

address revealer - 0xb1080E639CC542C9BfbC1e2fffac075Fea848287

address revealee - 0x652¢c3c775A82fEc8D176BEaEB1e259DD5b0c8526

uint40 kycTimestamp - 1661786511 / GMT: Monday, August 29, 2022 3:21:51 PM
uint40 expiration - 1664541564 / Friday, September 30, 2022 12:39:24 PM

}

We can get the same KYC data by providing revealee address
0x652¢c3c775A82fEc8D176BEaEB1e259DD5b0c8526

1. getLatestFulfilledRequest

_revealee (address)

0x652c3c775A82fEc8D176BEaEB1e259DD5b0c8526

Query
tuple

[getLatestFulfilledRequest(address) method Response]
» tuple : truefalse,true,true,0xb1080E639CC542C9BfbC1e2fffac075Fea848287,0x652¢3¢c775A82fEc8D176BEaEB1e259DD5b0c8526,1661786511,1664541564

Pricing for KYC Requests

Actual price for KYC requests could be obtained from Consumer Smart Contract

Everest Network 1

ﬁ How To Use Everest Identity Services 0
Through Chainlink Direct Requests

9. oraclePayment

100000000000000000 uint256

https://goerli.etherscan.io/address/0xd6c576b4f6ab3d70b49fa2a1f73711943f3a14f2#readContract

100000000000000000 is equal to 0.1 LINK tokens per requestld

Useful Links

Everest ID Oracle Overview
https://qist.github.com/ericjaurena/e29060362f311158dfccff94c95dd9c8

Everest Network 12

https://goerli.etherscan.io/address/0xd6c576b4f6ab3d70b49fa2a1f73711943f3a14f2#readContract
https://gist.github.com/ericjaurena/e29060362f311158dfccff94c95dd9c8

